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Abstract

How should tasks be allocated dynamically between people and intelligent machines?
What are the initial issues?  Previous work on static task allocation and work on human
performance when multi-tasking and when interrupted provides suggestions on how to
dynamically allocate tasks between humans and machines. We use these results to
explore previous theories of task allocation. Some of these theories have direct
suggestions for dynamic task allocation and some have indirect implications. We use
both types to provide a list of suggestions for creating systems that do dynamic task
allocation. The context we will be working with is a type of pilot’s associate that has a
description of the pilot’s tasks and flight mission built within a cognitive architecture.
The proposed associate has an additional component that can match the pilot’s
performance to these tasks, predict the flight phase and pilot’s current tasks, and use this
information to dynamically allocate these tasks between the pilot and the automation.
These suggestions are to inform the design of a high-level intelligent controller.
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1 Introduction

You are designing an advanced intelligent automation system for a new aircraft. This
system is being designed to improve the performance of the aircraft during all phases of
flight operation and to improve flight safety. What are the characteristics of this system
that will meet these goals? What areas of uncertainty exist regarding these
characteristics? What research is required to address these uncertainties? We present
two scenarios to illustrate a few of the possible considerations that need to be addressed
to answer these questions.

Scenario 1:

During pre-flight operations the pilot is completing his checklist when the tower
contacts the pilot regarding a change to the takeoff runway assignment for the
flight. The pilot responds to the tower and asks for clarification of the instructions.
The pilot returns to the checklist but inadvertently skips several items in the
checklist.

Scenario 2:

During pre-flight operations the pilot is completing the preflight checklist when the
tower announces a change to the takeoff runway assignment for the flight. The
intelligent automation that has been monitoring the pilot s activities and external
communications responds to the tower that the pilot is involved in a critical task and
asks the tower if their response can be delayed. Given an affirmative response from
the tower the automation continues to monitor the pilot s activities and when the
checklist is complete it informs the pilot that the tower has contacted them and the
pilot should respond. Or, when given a negative response from the tower, the
automation notes where the pilot is in the checklist and informs the pilot of the
tower communications. When the communications with the tower is completed the
automation monitors the pilot s activities to assure the checklist is completed from
the point of interruption.

These scenarios highlight a number of important considerations for the design of
intelligent automation for aircrew support. One aspect that is highlighted is the extent
and depth of the knowledge  developed and maintained by the automation of the
current context, the overall mission goals and standard cockpit activities, and the goals
and intentions of the human aircrew. A second aspect involves when to interrupt the
aircrew s current activities either to provide important information or to request a
command decision. A third aspect involves a monitoring function performed by the
automation to assure that critical tasks being performed by the aircrew are performed
correctly.

Each of these capabilities already exists in semi-automated cockpits. By intelligently
allocating tasks dynamically, it should be possible to improve performance as the
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mission evolves and the requirements on the joint human-automation system change.
Future work will help determine which of these scenarios will occur in cockpits that
attempt to introduce increasing intelligent automated support for the human aircrew and
provide for dynamic allocation of tasks between the pilot and automation aids. We
review here what is known about how people dynamically allocate tasks.

Automation was originally expected to reduce the workload on the human in the
system. However, the impact of automation on the workload characteristics of the
human agent is far more complex. As nearly every researcher finds, automation does
not simply reduce the workload, rather it redistributes the workload and causes
fundamental changes in the character of the operator work. Automation also forces new
communications and coordination requirements on the human.

Automation has been found to primarily support the human during routine phases of
operation (when the human workload is relatively low) but generally fails to provide
support under dynamic critical phases of operation when support for the human is most
crucial. Automation in many instances relieves the operator of tasks at times when he
already has a light workload but during periods when the workload is high and time is
short it may add to his workload or even impede his effort.

This report approaches dynamic task allocation in three different ways. First, we review
previous studies, commentaries, and reviews. The previous reports suggest issues that
must be kept in mind when dynamically allocating tasks. And as it is an important
subtask, what happens when humans are interrupted when they work in a complex
multi-tasking environment. The literature that we are aware of does not provide a
complete theory of how to allocate tasks dynamically between humans and machines,
but these prior studies and reports, taken together, start to provide guidance and
important suggestions as to the salient features.

Second, we can take these issues and examine how these issues are related to theories
of human problem solving and performance, such as is implemented in the ACT-R
cognitive architecture and existing theories of task allocation. As we do this we find
that there are additional issues, problems, and complexities in dynamic task allocation.

We will first note several of the numerous issues that have arisen in previous studies on
task allocation and on dynamic task allocation. We will use these issues to explore
previous theories of task allocation. Some of these theories have direct suggestions for
dynamic task allocation, and some suggestions that can be derived. We will use both to
provide a list of suggestions for creating systems that do dynamic task allocation.

Finally, we examine several studies on task allocation in general and dynamic task
allocation in particular. Overall, the review, the theories, and the data make several
suggestions for implementing and improving dynamic task allocation. Most
importantly, in the design of systems with dynamic task allocation it is necessary to be
particularly careful about the communication of task status and task allocation.
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Awareness of each team member s status and progress, and the environmental context
are also important.

The context we will be working with is a type of pilot’s associate that has a description
of the pilot’s tasks and flight mission built within a cognitive architecture. The associate
has an additional component that can match the pilot’s performance to these tasks,
predict the flight phase and pilot’s current tasks, and use this information to
dynamically allocate these tasks between the pilot and the automation. These
suggestions are to inform the design of a high-level intelligent controller and to note
what features to attend to in order to improve this allocation over time

2 Issues in Dynamic Allocation of Tasks among Humans and Machines

Numerous authors have written about problems in allocating tasks between humans and
machines. In this section we review several of the most salient issues and problems that
have been identified after first defining some terms and providing an overview.

Currently, there is a desire for automation to assist with work through dynamically
allocating tasks as well as doing them. There are two possible ways this has been
considered. The most common is for the automation to dynamically allocate the tasks
and most of the work reviewed here takes that approach. The other approach is to allow
the user to allocate the tasks. This is a theme we will come back to in the conclusions
(if not before). The former view, with the automation having more control, is better
studied.

The fundamental characteristic of all function allocation methods is that the system and
the goals (e.g., the mission) can be decomposed. One hierarchical structure for
representing human engineering analysis presented in Beevis (1999) is:

(a) Mission and Scenario Analysis
(b) Function Analysis
(c) Function Allocation
(d) Task Analysis
(e) Performance Prediction
(f) Interface and Workspace Design

The higher level functions are considered to be composed of tasks, and tasks are often
viewed as the concrete tangible activities (opening a valve or extending the flaps),
whereas functions are viewed as more abstract.

Function allocation refers to the distribution of function among humans and machines
in complex technological systems such as aircraft cockpits. Function allocation is
inherent in the use of automation and results from the decision to introduce automation
into the system even if the allocation of function is not explicitly considered (Hollnagel
& Bye, 2000).
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For systems involving human agents and automated agents, dynamic function
allocation has been described as the redistribution of tasks or functions among these
agents in order to facilitate the attainment of one or more common system goals or
objectives (Campbell et al.). Dynamic function allocation presupposes that both the
human and the machine have the capability to perform the function. This redundancy
among human and machine for performing similar functions has been termed function
congruence  (Hollnagel, 1999). The allocation is typically done in response to some
change in the system environment or context such as a change in the workload of the
human agent. The dynamic reallocation of functions between human and automated
agent is often referred to as adaptive automation.

2.1 The benefits and problems of automation

Parasuraman (1997) has identified four types of problems that can arise when
automation is used:

(a) Loss of expertise — whenever a function or task previously performed by the
human is allocated to automation there is a loss of skills on part of the human
in performing the task should the need arise. Under abnormal conditions,
when the human is required to take over these tasks, the human s skills and
situational awareness may have become sufficiently degraded to seriously
diminish their ability to perform the task in a timely manner.

(b) Complacency — Trust results from the gradual acceptance of the reliability of
the automation over time with successful performance. There are both
negative and positive aspects of this growing trust. Overestimating the
reliability of the automation can lead to complacency and a false sense of
security in the infallibility of the system. A human operator may come to
overly trust highly reliable, but still imperfect automation. Under these
conditions the operator may fail to monitor the actions of the automation and
fail to detect instances when the automation fails. Complacency is a function
of an operator s trust, reliance on, and confidence in the capabilities of the
automation (Singh, Molloy, & Parasuraman, 1993).

Moray (1999) however, suggests that failure to monitor is more likely to be a
eutactic strategy rather than complacency and that alarms rather than
monitoring may be more important for the efficient supervisory control of
highly reliable systems. Moray defines complacent behavior as behaviour that
samples less frequently than is specified by some optimal strategy. Eutactic
behavior is sampling that matches an optimal (or at least a satisficing)
frequency and which ensures optimal (or at least satisficing) performance in
detecting signals.

(c) Lack of Trust — The reliability of the automation is central to the human
operator developing trust in the system and the willingness of the human to
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use the automation. Automated systems may not be fully utilized or not used
at all if the level of mistrust resulting from poor reliability is high.

(d) Loss of Adaptivity — System designers have often designed the actions and
functions of automation in such a manner that the normal adaptive behavior of
human cognition is thwarted and frequently becomes counterproductive to the
actions of the automation. Designers that conceive of human cognition as a
purely reactive system neglect the human s expectations of future events and
the feedback that is necessary for adaptation.

Dekker and Woods (1999) provide a summary, shown in Table 1,  of the purported
benefits of the introduction of automation and the realties associated with its
introduction.

Table 1. Benefits and Challenges of Automation, taken from Dekker and Woods (1999).

Putative benefit Real complexity
Better results, same
system (substitutional)

Transforms practice, the roles of people change

Offloads work Creates new kinds of cognitive work, often at the wrong
time

Focuses user attention
on the right answer

More threads to track; makes it harder for practitioners to
remain aware of all the activities and changes around them

Less knowledge
required

New knowledge and skill demands

Autonomous machine Team play with people is critical to success
Same feedback support New levels and types of feedback are needed to support

peoples  new roles
Generic flexibility Explosion of features options and modes create new demand

types of errors and paths toward failure
Reduces human error Both machines and people are fallible; new problems

associated with human-machine coordination breakdowns

2.2 Ironies of automation

In a now well known chapter, Bainbridge (1987), wrote about the ironies of
automation, how taking away the easy parts of the user’s tasks, the parts that automation
can handle, can make the difficult parts of the user’s tasks more difficult. Through
example and argument from first principles she makes the case that automation can lead
to problems through several mechanisms, many of which are reported as problems by
other authors. These problems include (a) how manual control skills and cognitive
skills related to problem solving deteriorate without practice. When the user must help
the automation, these skills are less practiced. (b) With less hands-on practice with the
system, the user has a poorer mental representation of the system and how it responds
to inputs. (c) The user monitoring a system being controlled by automation has poorer
situation awareness than a user manually controlling the system. (d) The task that is
most often passed to the human user, that of monitoring a system and looking for
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anomalies, is a vigilance task, one of the most difficult tasks for a human to perform for
long periods of time.

Bainbridge proposes several solutions for dealing with these factors. The first is better
use of displays and alarms to support the user in their monitoring task. These displays
should also provide additional state information, similar to Wood’s later arguments.
One particular problem to avoid is masking a system moving towards a catastrophic
failure without the user being aware of the systems  movement until the automation
completely fails, leaving the user to sort out a particularly nasty state. Second, the
automation must progress at a pace the user can follow and monitor. Third, an ironic
suggestion itself, is for the automation to fail more often to keep the user more vigilant.
Finally, practice on simulators on the hard and rarer problems is seen as a partial
solution.

2.3 Automation as team player

The introduction of automation into a system explicitly changes the characteristics of
the system and fundamentally changes the nature of the interactions in the system. The
automation is much more than a substitute for human activities. Sarter and Woods
(1997) suggest that introduction of semi-autonomous machine agents is like adding a
new team member. This results in new coordination and communication demands on
the existing team members because the performance objectives of the system are not
met by the individually agents working independently but through the coordinated
activities of the humans and machine agents (Christoffersen & Woods, 2002).

Hence, cooperating automation is a good team player when it is both observable and
directable (Christoffersen & Woods, 2002). If it is difficult for the human team
members to observe the actions and intentions of the automation or it is difficult to
direct the automation then the coordination demands on the human team members are
magnified. If advanced automation is introduced into the system with increased
autonomy and authority and without considering the requisite increase in coordination
then the result often is automation surprises  (Christoffersen & Woods, 2002).

Observability includes development of a shared mental model of the problem or task
being performed and of the current context (situation). Furthermore, the human agent
must understand what activities the machine agents are engaged in to further the goals,
why they are performing these actions, what they likely are going to do next, and
indications of the success or difficulties they are having in the performance of these
activities. Christoffersen  and Woods (2002) indicate that new forms of feedback in the
form of pattern-based representations of automation activities will be required to
balance the new levels of agent autonomy. This feedback includes event-based
representations that highlight changes and events, that indicate what changes and events
will occur next and how soon, that integrate data into meaningful patterns that can be
quickly understood, and that support re-orienting attention to important events. More
information is available to the operator today than was available in the past, but the
methods used to present this information do not match the information-processing
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capabilities of the operator and do not facilitate the operator s understanding of the
information in the context of what he needs to know (R. Amalberti & Sarter, 2000;
Dekker & Woods, 1999; Howard, 1999). The interfaces for current generation of
automated systems are designed for data availability rather than data observability.

Directability involves the capability for the humans to intervene and change the
characteristics of the machine agent s activities. Generally, past intervention by humans
has been of an all or none  variety where the human could intervene to take complete
manual control of the activity from the automation. However, this approach does not
take advantage of the capabilities of the automation acting in a subsidiary role and
places the full workload for the activity on the human. Christoffersen and Woods
(2002) recommend an intermediate cooperative mode of interaction, which allows the
human to direct the automation to perform sub-problems  or to interject solution
approaches that the automation was not preprogrammed for. A critical area to address is
the development of techniques for communicating the intent of the machine agents to
human users including the agent s target(s) and goals, and its constraints.

2.4 Automation surprises

Automation surprise is a term that was coined for the circumstances when the
automation takes some action that the human was not prepared for or does not
understand. There is a divergence between what the operators expect the automation to
be doing, or to do, and what the automation actually is doing, or will do (Dekker &
Woods, 1999). The human operator typically is asking questions such as: What is it
doing now? Why did it do that? What is it going to do next? (Wiener, 1989). The
human is unable to assess the current situation as a result of insufficient information
from the automation.

Automation surprise appears to be most prevalent with automation that can
autonomously make decisions (e.g., change flight mode) without the consent of the
operator and without clear feedback from the system to the user that changes have been
made. To minimize the potential for automation surprises under these conditions
Dekker and Woods (1999) suggest that the human operator must:

• have an accurate model of how the system works,
• call to mind portions of their knowledge that are relevant to the current

situation,
• recall past instructions that may have occurred some time ago and may have

been provided by someone else,
• be aware of the current and projected state of various parameters that are inputs

to the automation,
• monitor the activities of the automated system, and
• integrate all this information and knowledge together to assess the current and

future behavior of the automated system.
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This list emphasizes the complexity of the impacts on human cognition and human
workload when autonomous automation is introduced into the human-machine system.

An important observed behavior of complex human-machine automated systems under
infrequently occurring, off-normal, and often critical situations where the cognitive and
coordination demands on the system rapidly escalate is that the automation is ill-
designed to support the human agents and often adds to the human agent workload
rather than providing support. The automation is often brittle  under these conditions.

2.5 Cooperation

Cooperation is often defined as the joint activities of multiple agents toward a common
goal. However, when one or more of these common agents is a machine it is not clear
if, and how, the machine agent maintains a representation of the overall common goal.
Noting the asymmetric nature of human-machine cooperation, Hoc (2001) has defined
cooperation as:
Two agents are in a cooperative situation if they meet two minimal conditions.

(1) Each one strives towards goals and can interfere with the other on goals,
resources, procedures, etc.
(2) Each one tries to manage the interference to facilitate the individual activities
and/or the common task when it exists.

The symmetric nature of this definition can be only partly satisfied.

In the definition above interference refers to any interactions among the agents that may
impact the activities of the other agents either in a positive (facilitation) or negative
manner. Hoc (2001) identifies the following types of interference:

a. Precondition interference _ This type of interference relates to the activities that
one agent must perform in order for another agent to perform his particular
activities.

b. Interaction interference — These are contemporaneous activities performed by
agents that may support or conflict with the actions taken by other agents and
must be coordinated.

c. Mutual control interference — The activities of one agent are monitored and
checked by a second agent and when a disagreement arises a method for
consensus is implemented.

d. Redundancy interference — Under conditions when it is not clear which agent is
most capable of performing a task the task may be allocated to two or more
agents with different capabilities.

2.6 Supervisory control/decision authority

It is generally considered a central principle in automation design that the final
responsibility and authority for decisions and control must reside in the human
members of the system. Because humans bear the ultimate responsibility for the
performance of the system they must be presented with adequate information and
control to intelligently exercise this authority. Hence, the humans need to be involved
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(kept in the loop) and informed about the current situation and intended actions by the
automation.

Sheridan (1992) proposed a breakdown in the degree of control among humans and
machine that ranges from complete manual control to fully autonomous machine
control. Scale of levels of automation from Sheridan (1992) that provides a description
of the levels of authority:

1. The computer offers no assistance, human must do it all.
2. The computer offers a complete set of action alternatives, and
3. narrows the selection down to a few, or
4. suggests one, and
5. executes that suggestion if the human approves, or
6. allows the human a restricted time to veto before automatic execution, or
7. executes automatically, then necessarily informs humans, or
8. informs him after execution only if he asks, or
9. informs him after execution if it, the computer, decides to.
10. The computer decides everything and acts autonomously, ignoring the human.

Inagaki (1999) argues that there are certain situations where it is proper that final
authority reside in the automation itself. He argues that under situations where system
safety is involved the automation may be given the authority to take an automatic
action even when an explicit instruction has not been received from a human. He gives
examples of control actions that are performed automatically in nuclear power plant
control rooms such as reactor trip and initiation of emergency coolant injection. Under
conditions where the control actions must be taken in a very short time period to avoid
catastrophic consequences, such as aircraft collision avoidance, it may be appropriate to
allow autonomous control actions. He also argues that under conditions when the
operator is not highly trained (non-professional) it may also be appropriate to allow the
automation to make decisions autonomously.

Although Iganaki s arguments contain valid points it should be recognized that the
basic principle that the human has overall responsibility has not changed. In situations
where a decision has been made to allow autonomous control action by the automation
the responsibility has been removed from local human operator and has been
transferred to the system designer or organizational management.

2.7 Situation/state/mode awareness

Situation awareness (SA) can be defined as an internal mental model of the current
state of the system and its environment. SA includes not only the immediate perception
of data, but also the understanding of the significance of this data on potential future
states of the system and environment (M. R. Endsley, 1999). Situation awareness
involves perceptual, diagnostic, and inferential cognitive processes. Endsley presented
a formal definition of SA as the perception of the elements in the environment within a
volume of time and space, the comprehension of their meaning and the projection of
their status in the near future.  Endsley identifies three levels of SA:
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Level 1 — perception of the important elements in the environment
Level 2 — comprehension of the current situation based on an integration of the

perceived environmental elements, the understanding of the function and
operation of the system and the interactions of the system and the
environment

Level 3 — projection of the future status of the system and the environment

Problems with situation awareness are the major causal factor in both civilian and
military aviation accidents (M. R. Endsley, 1999). Endsley (1996) indicates that
automation impacts SA through three major mechanisms;

1. Changes in vigilance and complacency associated with monitoring,
2. Assumption of a passive role instead of an active role in controlling the system,

and
3. Changes in the quality or form of feedback provided to the operator.

Mode awareness is a particular type of situational awareness that has been studied in
some detail. Degani, Shafto, and Kirlik (1999) define mode as as a machine
configuration that corresponds to a unique behavior . A mode is an enumerated
grouping of machine configurations and behaviors. Mode changes may be triggered by
specific operator commands or automatically by the machine. A particular type of loss
of situation awareness occurs when the automation can change operating modes based
on internal setpoints or triggers without the express consent or without formal
notification of the human controller and hence without the human recognizing that a
mode transition has occurred in the automation. This is a particularly controllable loss
of situation awareness.

Degani (1997) identifies three classes of modes associated with human-systems
interactions. As they described it [italics as in original]:

1. Interface modes that specify the behavior of the interface,
2. Functional modes that specify the behavior of the various functions of a

machine, and
3. Supervisory modes that specify the level of user and machine involvement in

supervising the process.

Mode ambiguity occurs when the input or control actions have different meaning or
effects depending upon the particular system mode. Mode error can result from mode
ambiguity when the user s expectations regarding an action differ from the actual
responses of the system to the action.

Mode ambiguity and mode related errors can be greatly reduced if the human has
developed a robust mental model of the automation that facilitates identification of the
current mode of the machine and the future modes of the machine given a manual input
or automation triggered event. This mental model requires an understanding of which
events or parameters and their thresholds trigger a mode transition and information
regarding the current event state and triggering parameter values (Degani et al., 1999).
The interface must provide the required information or there is little chance that the
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operator, even with a sound mental model, will be able to assess machine
configurations reliably.

2.8 Multi-tasking

Multi-tasking is the rule rather than the exception in aviation. Multi-tasking involves
performing several tasks concurrently, shifting cognitive resources among the
competing tasks being performed. A military pilot simultaneously controls the aircraft,
communicates with other aircraft and air traffic control, monitors his instrumentation,
watches for other aircraft or missiles in the air, monitors his altitude and proximity to
ground based obstacles, executes mission requirements, and fires his weapons.

Attention is important when considering multitasking. The National Research Council s
Panel on Modeling Human Behavior and Command Decision Making (1998) indicate
that attention can be understood as the means by which scarce or limited processing
resources are allocated to accomplish multitasking.  They enumerate three types of
attention:

1. Selective attention — process of selectively allocating processing resources to
some things at the expenses of others,

2. Focused attention — process of rejecting some things in favor of others,
3. Divided attention — a situation wherein the human attempts to carry out many

processes simultaneously, distributing resources among them.

When the human in a multitasking environment becomes overloaded several potential
outcomes may result. He may:

1. Continue to try to attempt to do all task but perform them less well,
2. Drop some tasks,
3. Develop a ordering queue,
4. Stop performing all tasks, or
5. Batch tasks (Kuk, Arnold, & Ritter, 1999)

An issue closely related to multitasking and attention is interruptions. Interruptions
occur when an individual is caused to change the focus of his current attention and
activity, usually as a result of an external sensory input. Generally, interruptions are
initiated by fellow humans, either in the immediate vicinity or remotely (as in attending
to a radio communication), or by the control or automation system. The interruptions
may be of advisory nature, such as a warning of some system malfunction or low fuel
level, or may request input from the human such as a supervisory decision.
Interruptions are an inevitable result of a complex control system involving multiple
intelligent agents (human and machine) in a multitasking environment. Dynamic task
allocation will require interruptions to be addressed, although there may be ways to
avoid or ameliorate interruptions.

McFarlane (1998) provides a formal definition of human interruption as the process of
coordinating abrupt changes in people s activities.   He also provides a detailed
taxonomy of interruptions.
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As McFarlane (1999) has noted, interruptions are problematic since people have
cognitive limitations that restrict their ability to work during interruptions. He suggests
that it is necessary to reconsider the design of interfaces such that these limitations are
acknowledged and that interruptions are allowed to occur in a manner that does not
compromise mission safety. One critical aspect of interruption, which he has called the
Method of Coordination  involves the technique used to decide when to interrupt
people. He identifies four ways of coordinating interruptions:

1. Immediate — Interruptions occur at any time and must be handled immediately.
2. Negotiated — An interruption is requested and the human chooses whether to,

and when to, handle the interruption.
3. Mediated — A third party screens all requests for interruptions and determines

whether or not to notify the human.
4. Scheduled — Interruptions are allowed only at certain times (or after certain

elapsed time periods).

It should be noted that negotiated interruptions have additional cognitive overhead in
that the act of negotiating a request for interruption is itself a task that must be attended
to and hence the human s attention has been changed to this intermediate task. As
Adams and Pew (1990) have noted, To notice the occurrence of an event in any useful
way, the pilot must immediately interrupt ongoing activities, at least to evaluate its
significance, and establish the priority of its response implications. Resumption of the
interrupted task must require thoughtful review of its status and may require repetition
or reinitiation of one or more of its procedural components. Thus, the very reception of
unanticipated data must always introduce an additional and disruptive element of
workload. The design implications, especially for time-critical systems, should not be
ignored.

2.9 Affective state

The human s affective state can have a significant effect on performance and potential
for error. Recent research indicates that emotion can have a profound influence on
cognitive processing and behavior. Affective state can influence perceptual, cognitive
and motor processes including memory and attention and higher-level processes such as
situational assessment, decision-making and judgment. For a review see Hudlicka and
McNeese (2001) or the Panel on Modeling Human Behavior and Command Decision
Making: Representations for Military Simulations (1998).

Fear and anxiety influence attentional focusing processes and perception, enhancing the
detection of threatening stimuli (Hudlicka & Corker, 2001). The extent of the effect of
affective state depends on the individual, the task and on the context. They suggest that
there are other contextual factors that determine the extent of the influence of affective
state including skill level, general cognitive abilities, individual history, prior
experience with the task and current interpersonal environment.
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Hudlicka and Corker list the following questions regarding emotions and their role in
human behavior and their influence on operator control modes:

• What is the function of emotions? What role do they play in behavior and
adaptation?

• How do individual differences and distinct personalities influence cognitive-
affective interactions? How does this vary across situational contexts?

• What are the exact effects of traits/states on individual cognitive and perceptual
processes and structures? What is the causal sequence  of these interactions?

• How can the knowledge of these processes inform more error-resistant human-
system designs?

• How can existing human performance models, user modeling, and adaptation
methods be applied to affective adaptation? What emotions should and can be
recognized, modeled, and adapted to human-machine interfaces?

• How does the computational representation of competence interact with the
representation of affective states and personality traits?

• Under what circumstances should the system attempt to enhance the user s
affective state, when should it adapt to the user s affective state, and when
should it attempt to counteract it?

3 Theories of Task Allocation

Several theories of how tasks should be allocated between the user and the automatic
aids have been proposed, more than can be fully reviewed here. We examine a few
representative ones, as well as using a cognitive architecture to examine the issues of
how to dynamically allocate tasks.

We include the topic of interruptions because as the tasks are allocated dynamically,
communication between the automation and the user will have to occur. As the
communication of the automation to the user has to be about tasks the user is not
performing, these communications have some aspect of interruption about them.

3.1 Human information processing models

Hollnagel (2000) suggest that there are two fundamentally different categories of
human information processing models; linear and cyclic. A specific example of a cyclic
model called the four stage model is described.

3.1.1 Linear models

The first model generally considers events to occur in a linear fashion with the human
responding to current sensory inputs (communications, events, signals) and producing
actions to effect system responses based on these inputs.
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3.1.2 Cyclic models

The second model views the human processor in a cyclic pattern where the implications
of future actions are considered as well as the empirical results of prior actions in the
cognitive process (Hollnagel & Bye, 2000). The cyclic model contains an extended
notion of time — there exists a past (a history), a present, and a future. The cyclic model
emphasizes the importance of the human s current understanding of the situation (state
of the system) and how past actions and events have shaped the situation and how
future actions may change the situation. In the aviation domain loss of this
understanding of the current situation by the pilot as a result of the effects of
automation has been called taking the pilot out-of—the-loop.

In the cyclical model the human tasks of evaluation and acting are continuous and
coincidental. This facilitates the representation of disruptions or interruptions in
execution of a plan (an ordered set of intended actions for performing a task), multi-
tasking (the performance of interleaved plans) and the impact of focused attention on a
single task on the performance of other tasks.

3.1.3 Four stage model

Parasuraman et al (2000) propose a four-stage model for human information processing
to cover automation of different types of functions in human-machine systems. These
stages are:

1. Acquisition and registration of information — positioning of sensory receptors,
sensory processing, pre-processing of data prior to full perception and selective
attention,

2. Conscious perception and information analysis  — manipulation of information
in working memory including rehearsal, integration and inference,

3. Decision and action selection, and
4. Implementation of response or action.

These four stages are considered to be coordinated in perception-action  cycles rather
than in a strictly linear manner and there is overlap and inter-dependence in the various
stages. Each of these four functional stages can be automated to a different extent. They
suggest the use of the ten levels of automation proposed by Sheridan (1992) and
discussed in section 2.6. The primary metric for assessing which level of automation is
appropriate is the human performance consequences of that level of automation.
Secondary evaluation criteria are the reliability of the automation and the costs of
decision/action consequences . The costs of the decision/action outcome refer to the
consequences resulting from incorrect or inappropriate actions.

The human performance consequences to be considered include (Parasuraman et al.,
2000):

1. Mental workload
2. Situation Awareness
3. Complacency
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4. Skill Degradation

3.2 ACT-R’s cognitive mechanisms

ACT-R is a theory of human cognition developed by Anderson and his colleagues
(Anderson & Lebiere, 1998) - also see act.psy.cmu.edu for an online tutorial). It is a
unified theory of cognition, in the spirit proposed by Newell (1990) in that it is
designed to predict human behavior by processing information and generating
intelligent behavior itself. As such a theory, it makes suggestions about when and how
tasks should be allocated to human users.

The major components of ACT-R are shown in Figure 1. Information is received
through a perceptual, typically visual, system, indicated schematically on the bottom
right of the figure. The objects identified by perception are processed by a production
system (center) that matches patterns and modifies internal buffers. These buffers
include buffers for goals (upper left), for perceptual information, and for declarative
memory (upper right). Finally, the results of processing can be put into an output buffer
for output through the motor system.

Motor
Modules

Current 
Goal

Perceptual
Modules

Declarative
Memory

Pattern Matching
And

Production Selection

Check

RetrieveModify

Test

Check
 State Schedule

Action

Identify
Object

Move
Attention

ACT-R 5.0

Environment
Figure 1.  A schematic of the major components of ACT-R. Reprinted with permission of Lebiere.

These buffers typically include full, detailed theories themselves, and are based on
published data from psychology studies. The perceptual and motor buffers, for
example, are based on an existing theory of perception and motor action (Byrne, 2001).
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These mechanisms, as summaries of human behavior, make several suggestions about
when and how to allocate tasks to the user represented with these components, and
when to interrupt the user.

Users will typically be performing multiple tasks based on their goals, which may be
represented in the Current Goal buffer as well as in declarative memory. They will be
encoding information from perception, and using the resulting encoded objects to work
towards their current goal.

ACT-R suggests that the best way to perform dynamic task allocation and schedule
interruptions will depend on the tasks and the user’s task knowledge representation.
Suggestions for optimal performance from previous studies may be tied to those studies
tasks and user knowledge sets. Learning can also be important.

3.2.1 When task switches would be least disruptive

There are several places where interruptions would be the least disruptive. Examples of
such temporal location are interrupting at the end of a task that does not need its goal
augmented or saved, and interrupting after the goal has been augmented or saved.
Interrupting by putting a flag up in perception that leads to the appropriate rules
matching and taking the new information in at an appropriate user chosen time, such as
at the end of an internal task, would also be appropriate.

Dynamically taking the entire current goal from the user might also be minimally
disruptive in terms of the architecture. The goal could be popped and passed out via the
motor commands. If it did not have to be monitored, this should not be very disruptive.

Dynamically allocating a task would be best done where the task being removed (or
added) to the user’s list of tasks maps fairly directly onto the task knowledge in the
user’s head. That is, moving tasks that are represented relatively the same in the user s
head as well as the world, and are modular will be easier to keep track of by both the
automation and the user than tasks that require problem solving and representation by
the user.

Leaving the user with tasks that use different parts of the architecture would be
desirable. Sets of tasks that use more of the architecture in parallel will provide more
throughput, although the same must be said for automation architectures as well. For
example, using speech input for one task and vision input for another will allow expert
users, at least, to process more information.

3.2.2 When task switches would be disruptive

The ACT-R architecture suggests that there are several places where interruptions
would be particularly disruptive. If the interruption leads to modifying a motor output
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in process, then the motor output will be lost. If an interruption occurs when a goal is
being transferred from the current goal buffer to declarative memory (because a
subgoal is being created), or during rehearsal of a goal, could lead to losing that current
goal.

An interruption or task allocation should not occur when a perceptual object that should
lead to a goal is being encoded into a goal. Interrupting at this time, if the perceptual
object disappears, could lead to not performing the appropriate task.

Reallocating a task that has several similar sub-tasks would be more difficult; the
similar tasks are likely to be retrieved along with the goal, and are likely to be wrongly
updated in the process. Interruptions that occur in the middle of a set of actions can
disrupt those actions if they are represented as a set of goals in declarative memory and
the order is critical but still not well learned. At the time of the interruption, the goals
should have rather different activations and be retrievable in order based on those
differences. The time spent processing the interruption will allow the goals to decay,
and with the exponential decay, become more similar in activation, leading to
confusions in retrieval. An example model of this has been created by Schoppek  et al
(2001).

3.2.3 Supporting behavior across interruptions

Altmann and Trafton’s  (2002)  ACT-R model of a problem solving task showed that
some errors in performance arise because the correct goal to work on is not always
retrieved from working memory. The retrieval failure can be caused by not having the
correct goal active enough, or through noise in the retrieval process that allows a
similar goal or a nearly equally active previous goal to be retrieved. Errors will increase
in larger tasks because there are more goals and a greater reliance on memory to keep
track of goals.

Altmann and Trafton’s theory  (2002) suggests several ways to reduce these errors.
Allowing the user time to encode and strengthen goals upon interruption can ameliorate
some of the problems of interruptions because the correct goal can then be recalled
when the task is resumed. Providing cues to resume the task as well as generally using
external memory aids is also useful.

More concretely, the interruptions must themselves be paced, the user must take time to
save their current task, perhaps and commonly by encoding a retrieval cue using the
environment. Good retrieval cues are thus also important. The cue must be available as
the task is taken back up. Keeping state knowledge, in the world, and in your head is
thus important when being interrupted.
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3.2.3 Learning when to interrupt

Learning by the user will make knowing when to interrupt more difficult. With learning
users will become faster at subtasks, will strengthen their declarative memories, and
can change their strategies.

With learning, the user will be able to handle interruptions more gracefully. With
additional expertise they will have more capacity for task performance, they will
process information faster and they will be able to keep the objects in declarative
memory in mind better.

An observing system might also be able to learn when to interrupt. This system would
be attempting to learn the internal steps the user was performing in order to find when a
subtask switch had occurred. Observing the motor output (including speech) and
perceptual input while having a model of the user’s internal state and processes would
be required for learning.

3.3 General theories of task allocation

3.3.1 Left-over principle

Early strategies for function allocation allocated all those functions to the machine that
were technically and economically practicable to automate. The underlying assumption
was that humans are inherently unreliable and/or inefficient, and that overall system
performance would be improved by automating all possible tasks. The human was then
allocated those functions that could not be, or were not, automated. This strategy has
been called the left-over principle. Implicit in this approach was the assumption that
automation could be substituted for human actions without any significant impact on
the overall system (Sarter et al., 1997). There was little consideration given to whether,
or how well, the human could effectively perform these remaining non-automated
tasks.

3.3.2 Compensatory principle/Fitts  list/MABA-MABA

Fitts (1951) introduced the first systematic approach to joint allocation of functions
between human and machine. This approach, often called the complimentary approach
or MABA-MABA (men are better at-machines are better at), was based on an
assessment of the relative strengths and weaknesses of humans and machines, and
functions and responsibilities were allocated based on this assessment. It has been noted
that the principles on Fitts  list are static and consequently are ineffective for dynamic
task allocation (Sheridan, 2000).
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Table 2. The Original Fitts  (1951) List.

Humans appear to surpass present-day machines with respect to the following:˚
• Ability to detect small amounts of visual or acoustic energy
• Ability to perceive patterns of light or sound.˚
• Ability to improvise and use flexible procedures.˚
• Ability to store very large amounts of information for long periods and to recall

relevant facts at the appropriate time.˚
• Ability to reason inductively.˚
• Ability to exercise judgment.˚

Present-day machines appear to surpass humans with respect to the following:˚
• Ability to respond quickly to control signals, and to apply great force smoothly

and precisely.
• Ability to perform repetitive, routine tasks.
• Ability to store information briefly and then to erase it completely.
• Ability to reason deductively, including computational ability.
• Ability to handle highly complex operations, i.e. to do many different things at

once.

3.3.3 Complimentarity principle

A third approach to function allocation called the complementarity principle (Grote,
Weik, Wafler, & Zolch, 1995) is directed at maintaining human control of the situation
and on the retention of critical human skills. This approach views function allocation
not as competition among the human agents and machines based competency in
performing the task or that the automation is a replacement for the human. It
emphasizes the means by which humans and machines can complement each other.

3.3.4 Complemation

Schutte (1999) presents the concept of complemation. He defines complemation as
complementary technology that is designed to enhance human skills and abilities
rather than replace them.  Complemation emphasizes that the machine be used
principally for monitoring and implementation and the human operator focuses on high-
level decision-making. The human is always engaged in the important activities and
thus develops the appropriate situational awareness. Machines should be used to
support humans in areas of human frailty such as poor memory recall, poor vigilance,
and lack of precision  and support the human areas of strength such as ability to
develop novel solutions under unanticipated conditions. Schutte is particularly sensitive
to the traditional automation approach of relegating monitoring duties to the human
operators, which he argues have been demonstrated to be inherently poor monitors of
highly reliable systems.

Schutte argues that nowhere is the difference between automation and complemation
more apparent than in function allocation.  He argues that the human operator should
always be involved at a high level and in a meaningful way in all important tasks so
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that he remains vigilant (does not become complacent because of high system
reliability), develops and maintains the correct situational awareness and maintains
skills necessary for troubleshooting. This argument suggests that many tasks that could
be automated (or have been automated) should deliberately not be automated to so that
the human remains involved in the task. Schutte indicates that the function allocation
scheme suggested by Endsley (1999) addresses the principles of complemation (section
3.3.5).

Increasing the role of the human in the joint-system has the potential to increase the risk
of human-induced errors, however Schutte argues that one of the main functions of the
machine should be to monitor and catch, counteract, and compensate for these errors.
The machine should also provide differing levels of augmentation for individual with
different levels of skills and abilities.

3.3.5 Levels of automation

Endsley (1999) developed a 10 level taxonomy of levels of automation (LOA) that can
be applied to a wide variety of cognitive and psychomotor tasks within domains
characterized by:

• multiple competing goals,
• multiple tasks competing for an operator s attention, each with different

relevance to system goals,
• high task demands under limited time resources.

Four functions types that can be allocated to the human or machine that are intrinsic to
these domains were identified as:

• monitoring  — scanning displays to perceive system status;
• generating — formulating options or strategies for achieving goals;
• selecting  — deciding on a particular option or strategy;
• implementing — carrying out the chosen option.

Table 3 shows the 10 level taxonomy created by assigning these functions to the human
or the machine or to a combination of human and machine.

3.3.6 Level of automation

Sheridan (2000) argues that his 10 levels of automation (section 2.6) have been
interpreted too strictly, that automation and control are multi-dimensional, and that task
complexities are not completely captured by the one-dimensional representation of the
10 level scale. He indicates that the optimal level of automation is likely different for
different stages of task performance, and one should not assume a priori that a single
level of automation is appropriate for all stages of a complex task. In conjunction with a
revised 8-level scale of automation (reduced from the 10-level scale shown in section
2.6) he proposes the use of a four stage task model:

1. information acquisition,
2. analysis and display,
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3. decide action, and
4. implement action

For each stage in the task a different level of automation may be appropriate.

Table 3. Hierarchy of levels of automation from Endsley (1999).

Roles

Level of automation Monitoring Generating Selecting Implementing
(1) Manual control Human Human Human Human
(2) Action support Human / Computer Human Human Human / Computer
(3) Batch processing Human / Computer Human Human Computer

(4) Shared control Human / Computer Human / Computer Human Human / Computer
(5) Decision support Human / Computer Human / Computer Human Computer

(6) Blended decision making Human / Computer Human / Computer Human / Computer Computer

(7) Rigid system Human / Computer Computer Human Computer

(8) Automated decision making Human / Computer Human / Computer Computer Computer

(9) Supervisory control Human / Computer Computer Computer Computer

(10) Full automation Computer Computer Computer Computer

1. Manual Control (MC) — the human performs all tasks including monitoring the
state of the system, generating performance options, selecting the option to
perform (decision making) and physically implementing it.

2. Action Support (AS) — at this level, the system assists the operator with
performance of the selected action, although some human control actions are
required.

3. Batch Processing (BP) — although the human generates and selects the options
to be performed, they then are turned over to the system to be carried out
automatically. The automation is, therefore, primarily in terms of physical
implementation of tasks.

4. Shared Control (SHC) — both the human and the computer generate possible
decision options. The human still retains full control over the selection of which
option to implement; however, carrying out the actions is shared between the
human and the system.

5. Decision Support (DS) — the computer generates a list of decision options that
the human can select from or the operator may generate his or her own options.
Once the human has selected an option, it is turned over to the computer to
implement. This level is representative of many expert systems or decision
support systems that provide option guidance, which the human operator may
use or ignore in performing a task. This level is indicative of a decision support
system that is capable of also carrying out tasks, while the previous level
(shared control) is indicative of one that is not.

6. Blended Decision Making (BDM) — at this level, the computer generates a list of
decision options that it selects from and carries out if the human consents. The
human may approve of the computer  s selected option or select one from
among those generated by the computer or the operator. The computer will then
carry out the selected action. This level represents a higher level decision
support system that is capable of selecting among alternatives as well as
implementing the second option.
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7. Rigid System (RS) — this level is representative of a system that presents only a
limited set of actions to the operator. The operator s role is to select from among
this set. He or she may not generate any other options. This system is, therefore,
fairly rigid in allowing the operator little discretion over options. It will fully
implement the selected actions, however.

8. Automated Decision Making (ADM) — at this level, the system selects the best
option to implement and carry out that action, based upon a list of alternatives it
generates (augmented by alternatives suggested by the human operator). This
system, therefore, automates decision-making in addition to the generation of
options (as with decision support systems).

9. Supervisory Control (SC) — at this level the system generates options, selects the
option to implement and carries out that action. The human mainly monitors the
system and intervenes if necessary. Intervention places the human in the role of
making a different option selection (from those generated by the computer or
one generated by the operator), thus, effectively shifting to the decision support
LOA. This level is representative of a typical supervisory control system in
which human monitoring and intervention, when needed, is expected in
conjunction with a highly automated system.

10. Full Automation (FA) — at this level, the system carries out all actions. The
human is completely out of the control loop and cannot intervene. This level is
representative of a fully automated system where human processing is not
deemed to be necessary.

3.4 Theories of dynamic task allocation

3.4.1 Cognitive systems engineering

Complex control systems such as aircraft cockpits, air traffic control systems and
nuclear power plants are typically composed of highly interrelated combinations of
human and automatic controls. Humans and machines must cooperate and collaborate
in order to successfully perform the intended actions and achieve the overall goals and
objectives of the system. Hollnagel and Woods (1999) have termed these collaborative
systems as joint human-machine systems or joint cognitive systems.

When modeling a complex control system involving humans and automation, a number
of different models are required. A model is required for human performance, a model
is required for the automation, and a model is needed for simulating the physical
response of the overall system to the control actions taken by the human and by the
automation (Hollnagel & Bye, 2000).

Hollnagel (1999) lists the four conceptual parameters for describing which and how
functions may be affected by automation:

1. Amplification — the function may be improved or increased.
2. Delegation —the function is transferred to the automation but remains under

control of the human.
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3. Substitution or Replacement — complete control for performance of the function
is given to the automation.

4. Extension — new functionality is added to the system.

Cognitive systems engineering takes a systems approach with an ecological orientation
(R. Amalberti & Sarter, 2000). Cognitive systems engineering emphasizes the holistic
study, modeling, and design of the human-machine system as a joint cognitive system
rather than studying individual subsystems in isolation.

Hollnagel and Bye (2000) advocate the concept of balanced work as a primary
consideration in the design of function allocation. During the performance of a joint
cognitive system the resources of the system as a whole are matched to the performance
requirements and the human, automation and organizational resources are combined to
meet the performance demands. If the performance demands change or resources are
added or removed from the system then the system must adjust (re-equilibrate) to
current demands and available resources. Reallocation of functions or tasks is one
method for reestablishing the equilibrium. However, the reallocation process itself can
initiate a destabilization of the current balance of work and require a new equilibrium to
be established.

3.4.2 Human centered automation

Human centered design is a process of ensuring that the concerns, values, and
perceptions of all stakeholders in a design effort are considered and balanced  (Rouse,
1991). Human centered design focuses not only on the user of a product or system but
on all the stakeholders involved in the design process.

A human centered approach to the design of automation explicitly considers the
impacts of the introduction of the automation on the humans in the system and on the
overall behavior of the system at the beginning and continuously throughout the design
process. Human centered automation has as its goal to support human efforts rather to
replace them.

3.4.3 Ecological/naturalistic design interfaces

Naturalistic decision-making attempts to understand how humans make decisions in
real world settings under complex time-constrained conditions. Klein (1991) lists the
following features of natural decision making:

1. Ill-defined goals and ill-structured tasks
2. Uncertainty, ambiguity, and missing data
3. Shifting and competing goals
4. Dynamic and continually changing conditions
5. Action-feedback loops (real-time reaction to changed conditions)
6. Time stress
7. High stakes
8. Multiple players



24

9. Organizational goals and norms
10. Experienced decision makers

As Howard (1999) has noted practitioners do not solve problems; they manage
situations.  Managing a situation involves making decisions. Experienced decision
makers when facing an operational decision rarely use formal analytical methods such
as multi-attribute utility analysis or decision analyses since these strategies generally
take too long under time constrained conditions. In fact, as Klein (1991) observed these
decision makers rarely even consider multiple options, instead choosing a single
solution based on past experience. These decision makers then watch the situation
evolve and modify or replace the solution if flaws develop.

Orasanu (1993) indicates that Naturalistic Decision Making is schema-based rather than
algorithmic. Features of a new situation are assessed and then compared with past
situations. A course of action is then determined based on ones that have been found
suitable for similar situations in the past. Endsley (1999) notes that when an individual
has a well developed mental model of a situation or domain, a direct, single-step link
exists between recognized situation classifications (schema) and typical actions that
facilitate rapid decision making.

3.4.4 Dynamic cognition

Amalberti (1998) describes a cognitive model for the pilot that he refers to as the
dynamic control model of cognition. This model is based on the theory that there is an
ongoing balancing of the desire to optimize the attainment of goals and to minimize the
cognitive resources required for these efforts. The cognitive resources include
perception, action, memory and reasoning capacities. Meta-cognitive knowledge is
employed to seek solutions that limit the demands on the resources. Under abnormal,
time-critical conditions, fighter pilots have been observed to consider only a few
preplanned diagnosis with associated preplanned responses rather than employing
additional cognitive resources for a detailed assessment of the situation. Under these
conditions they are trading optimal mission performance for a reduction in required
cognitive resources. Thus, to limit the cognitive resources expended, the potential risk
of failure is accepted (from a sub-optimal or erroneous solution), the situation is
simplified, and only a few pre-planned actions are considered.

Pilots use various abstractions to simplify their mental model of the world and current
situation. This simplification reduces the cognitive resources required to adapt and
control the current situation. This simplification also introduces the risk of erroneous
decisions and actions. Preplanning and anticipation of future events reduce uncertainty
and allows for proactive actions. Training and rehearsal enhance skills and automatic
behaviors that reduce the cognitive resource needs.
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3.4.5 Human triggered function allocation

Campbell et al. (1997) argue that when an agent is about to make a decision regarding
allocating functions or tasks to another agent an experienced agent would (or should):

1. assess his own state with regard to workload and capability to perform the
activity,

2. estimate the cost  of allocating the function such as the increase in
communications, monitoring and interactions,

3. make a determination regarding the ability of the second agent to perform the
activity, and

4. make judgments regarding the trust and confidence he has in the agent
successfully performing the activity.

Campbell has termed items 1 and 2 meta-cognitive processes and items 3 and 4
organizational (or social) cognitive processes. Table 4 summarizes the research issues
associated with each process.

3.4.6 System triggered function allocation (adaptive automation)

Campbell describes two concepts for function allocation that are initiated by the
automation itself: measure-based and model-based.

Measure-based system-triggered function reallocation seeks to make automated
decisions regarding function or task reallocation based on some set of empirical criteria
related to the human s situational state and judgments regarding the human agents
current performance capabilities. Metrics considered in past studies have included
psychometric and physiological parameters such as EKG, heart rate, and eye movement
to ascertain workload level and human affective state.

Campbell notes that it is not generally sufficient to base function reallocation decisions
solely on an assessment of workload change. Other measures of situational and agent
state may be required to support system-triggered dynamic function allocation.

Campbell also describes a model-based approach to system-triggered function
relocation. This approach envisions the use of human performance models (e.g.,
ACT-R, Soar) that are running in real time to monitor and predict the human situational
state and trigger function reallocation based on predefined thresholds. Although this is
an interesting concept, Campbell argues that the current human performance models are
not sufficiently robust to support this type of activity and that measure based triggers
can be validated more directly, since unlike human performance models the human
state metrics are visible.
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Table 4. Research Issues by Basic Process and Application Focus (Campbell et al., 1997).

Category
Specific
process

Training issues Work/ workstation
design issues

Automation design issues

¥ First agent
assesses
own internal
state.

¥ How to train people
to make more stable
and reliable
judgments on their
own ability to handle
(additional) tasks at
present and future
state?

¥ Designing ways to
allow a person to
visualize or assess
their own future as
well as current
workload,
information flow, etc.

¥ How to give automation
systems the ability to
estimate their own capacity
to take on additional tasks
in a given situation?

Meta-
cognitive
Processes

¥ First agent
assesses the
cost of
allocation.

¥ How to train people
to better anticipate
the consequences
(communications,
key-strokes, etc.) that
might be necessary to
support, or result
from, a function
allocation?

¥ Designing a
workstation to
minimize or automate
the communication
requirements for
functions that may be
dynamically shared.

¥ How to give the
automation system the
ability to tell the person
what information, etc. it
will need if and when it is
given a specific task in a
specific DFA setting?

¥ First agent
assesses the
second
agent s
ability.

¥ How to train people
to develop better
mental models of the
situational abilities
and reliabilities of the
human and/or
automated agents to
whom functions
might be dynamically
allocated?

¥ Creating DFA
interfaces that can
represent or visualize
attributes of task
requirements and
automation system
capabilities to aid
human first agent in
matching second
agent capabilities
with local task
requirements.

¥ What kind of information
could an automation
system provide on its
abilities, past behavior, etc.
that could help a human
decide on whether it was
feasible to allocate a given
function to that automation
system in a given DFA
situation? ¥ How to build
the capability to provide
that information into the
system?

Organiz-
ational
Cognitive
Processes

¥ First agent
determines
its
confidence
in the
second
agent.

¥ How to train people
to better judge the
situational
reliabilities of the
human and/or
automated agents to
whom functions
might be dynamically
allocated?

¥ Designing DFA
interfaces that allow
dynamically allocated
functions to be
tracked by first agent
and easily recalled if
quality degrades.

¥ What kind of information
could an automation
system provide on the
likely quality of its results
to help a human evaluate
its reliability in a given
DFA situation? ¥ How to
build the capability to
provide that information
into the system?

Suchman (1987) in her famous study pointed out that there are deep asymmetries
between what the human perceives of the context of an interaction and what the
machine can perceive. Her observations indicated that another human observing the
human operator of a machine can often readily perceive what the difficulties are and
intervene to assist the operator. However, the machine has only limited knowledge of
the observable actions of the user that result from the user s actions that directly
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affected the machine s own state. With this limited knowledge of the user s actions
combined with a pre-determined limited set of response actions the machine may not
respond in a manner that the user expects that it should. Without a rich shared
knowledge of the interaction, communications between the user and machine become
problematic.

Several recent researchers have been investigating methods for automation to increase
its contextual and situational awareness without imposing additional burdens on the
human operator. Onken (1997) indicates that the automation should have available the
same aspects of the contextual situation as the human crew. It would be desirable if the
automation had an even more comprehensive view. His view is that the automation
should evolve into a fully situational aware team player that can monitor the human
crew s activities and other contextual factors, provide recommendation and guidance to
the crew members and perform functions as needed under direction of the crew.

Onkin has developed the CASSY intelligent cockpit assistant with the goal to
incorporate cognitive systems in the cockpit, which are capable of processing abstract
human-like knowledge

• to independently assess necessary situation-relevant information about mission
goals, aircraft environment, aircraft systems and aircrew,

• to understand the flight situation,
• to independently interpret the flight situation in the light of the goals of the

flight mission,
• to support necessary replanning and decision making,
• to know which information the crew needs,
• to detect pilots’ intents and possible errors, and
• to introduce human-like communication initiatives by the cockpit systems .

Andes (2001) describes the intelligent Cockpit Intent Estimator (CIE) system for the
Rotorcraft Pilot s Associate (RPA). The RPA acts as a decision aiding entity aware of
mission objectives, knows how to execute tasks, and will flexibly and dynamically aid
the crew in support of the mission objectives.  The RPA is intended to be a virtual co-
pilot in advanced Army rotorcraft. The CIE is a component of the RPA s cockpit
interface, known as the Cockpit Information Manager (CIM) function. The main
purpose of the CIE is to interpret the intent of the flight crew through observation of the
activities and actions of the crew and without explicitly and repeatedly querying the
crew members. Andes defines intent interpretation as the process of identifying
patterns of human operator behavior in order to form a causal explanation for observed
actions in terms of the current objectives of the operator.  The CIE monitors the
activities of the crew through switch activations, stick and collective movements,
sensor usage, etc.  Using this objective information and knowledge of mission goals
and plans, current understanding of intentions, knowledge of the external world
acquired through aircraft sensors, and knowledge of acceptable cockpit behavior the
CIE infers the intentions of the flight crew. Another function of the CIE is to identify
conflicts between the flight crew s intentions and the RPA.
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Zhang and Hill (2000) are performing studies to develop models of virtual humans in
synthetic environments for military mission rehearsal and tactics evaluation. They
believe that one of the most important attributes of virtual humans is the ability to
develop an awareness of the current situations (environment, context). Situation
awareness is critical for rational virtual humans in that it supports:

• determination of achievable goals,
• selection of appropriate strategies and tactics,
• determination of a course of actions,
• prediction of possible reactions and consequences,
• establishment of focused attention,
• intelligent allocation of limited resources,
• explanation of decisions made, and
• reduction in uncertainty and a speed up of reasoning processes.

They identify two elements that are necessary for development of situation awareness
in virtual humans. The first element is a representation of the situation that includes
information about the relevant objects, their features and logical, organizational and
spatial relationships, actions for supporting understanding the situation, and possible
actions for responding to different perceptual input and external events.  They call this
representation a situation template or template for awareness. The second element is a
set of tools for situation assessment that support: identification of the relevant objects in
a visual field from perceptual inputs, finding association relationships among the
perceived objects and creation of a structured representation of the objects, and
mapping the structured representation to possible situation templates and identification
of the most similar ones. They call the structured representation of a set of sensed
objects a pattern.

The situation assessment model that they have implemented is a combination of the
descriptive(system architecture based on Endsley s model — see Section 3.3.5) and
prescriptive (production rules) approaches. Their initial efforts have been directed at
using situation awareness as the interface between perception and cognition by
directing the focus of attention. Without a focus of attention the perceptual system of
virtual humans can be overloaded by the volume of information to be processed in the
synthetic environment.

3.4.7 Contextual control model (COCOM)

The contextual control model (COCOM) is described as a functional control model and
is differentiated from structural models of human cognition based on the human
information processor metaphor (Hollnagel, 2000). The current version of COCOM
requires three parameters to describe the control of human performance; number of
goals, subjective available time, and the current control mode, and two functions;
choice of next action, and evaluation of outcomes.

The number of goals is the internal representation of the mental workload that the
human experiences in a situation. Its corresponding external parameter is the number of
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tasks to be performed to achieve these goals. The subjective available time represents
the humans perception of the available time to perform an action or complete a task.
The current control mode represents the characteristics of the humans  performance
given the situational context, the humans  knowledge and experience and the humans
expectations regarding how the situation may evolve. Hollnagel (2000) has identified
four overlapping control modes with the following characteristics:

1. Scrambled control mode — The choice of next action is random or irrational,
there is little cognition and performance is essentially by trial and error.

2. Opportunistic control mode — The next action is guided by what the human
perceives as the important aspects of the current situation, there is little planning
or anticipation involved.

3. Tactical control mode — Performance follows a known procedure or rule, there
is some anticipation of how the situation may develop, planning is of limited
scope and range.

4. Strategic control mode — The human looks ahead at higher level goals,
performance is guided less by the current situation and more by the perception
of how the situation will evolve and how this will impact the goals.

The choice of next action is a function that evaluates the next action performed based
on the current control mode. In each control mode the human s constructs (assumptions
and knowledge) and competences (actions, plans and template) are used to different
degrees. In the scrambled control mode the choice of next action is determined by the
need to meet the single immediate dominant goal. In the opportunistic control mode it
is also determined by the need to meet the immediate dominant goal. However, some
consideration is given to whether the action is possible given the situation and several
goals may be considered, but not coincidental in a systematic or integrated manner. In
the tactical control mode the choice of next action is extended to look at the
preconditions for the action and the interactions with other goals. Extensive use is made
of known plans and procedures and the results of past actions and the expected results
of the current action are considered. In the strategic control mode the characteristics of
the tactical control mode are extended to include an assessment of the present and
future conflicts between goals and plans and procedures are used extensively and may
be developed or modified based on the situation.

The evaluation of outcome function also differs among the control modes. In the
scrambled control mode the evaluation is as simple as possible; did the action result in
the goal being achieved? In the opportunistic control mode the evaluation considers
both whether the primary goal was achieved and whether the outcome was that which
was expected. In the tactical control mode the evaluation of possibly complicating
factors will also be considered (side effects) and indirect indications of the outcome. In
the strategic control mode short and long term consequences of actions are considered
and the impact of the outcome on all the goals is assessed.A summary of the
characteristics of the control modes is shown in Table 5.
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Table 5. Main Characteristics of the Control Modes from Hollnagel (2000).

Scrambled Opportunistic Tactical Strategic
Number of
Goals

One One or two
(competing)

Several
(limited)

Several

Subjectively
Available
Time

Inadequate Just Adequate Adequate Adequate

Choice of
Next Action

Random Association
based

Plan based Prediction
based

Evaluation of
Outcome

Rudimentary Concrete Normal Elaborate

3.4.8 Modeling situation awareness and pilot state

Mulgund (1997) describe research conducted to assess the feasibility of an adaptive
pilot/vehicle interface (PVI) that uses pilot mental state metrics (workload, information
processing burden, engagement level) and on-line situation assessment models to
adaptively determine the content, format, and modality of cockpit displays. The pilot
workload is inferred using a belief network approach from pilot physiological
measurements including heart rate, heart rate variability, blink rate, blink duration,
respiration rate, and EEG. The situation assessment model uses the aircraft sensor
outputs and a belief network model to assess the threat level. The adaptation module
dynamically changes the cockpit displays based on the assessed workload and threat
level. The level of automatic interface adaptation was assessed using a variation of
Sheridan s 10 level scale of automation (section 2.6).

4 Data on Dynamic Task Allocation

In order to know how best to allocate tasks to users, we will need to know the
advantages and disadvantages of the various possible strategies of allocating tasks. This
knowledge will require observing users doing a range of tasks with a range of ways of
task allocation.

We present here a few representative studies that illustrate user’s behavior where the
task allocation algorithm is static, and a few studies were the allocation is done in a
dynamic manner. These studies indicate a complex interaction between the tasks, user’s
expertise and abilities, and the allocation algorithm.

4.1 Static allocation studies

How do people perform tasks when the tasks are passed to them by automation in a
static way, that is, at specific times and in specific ways?  We note here a few
representative studies that examine how users perform these tasks when interrupted by
a fixed type of automation in specific ways.  These levels of automation can be viewed
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as a type of interruption, in that tasks and their control are passed to the operator from
the automation.

Additional studies are available on how users perform secondary tasks without
automation.  These can be viewed as studies into self-generated interruptions.  As such,
their results can be compared with automation doing the task allocation in either a
fixed, static way, or in a dynamic way.

Bailey and Konstan (2001) examined the effect of interrupting a user as they performed
six different types of simple tasks, such as adding numbers and reading a short
paragraph. The users were interrupted either at the end of tasks or in the middle of tasks
to perform a simple secondary task. Time to perform each task, and users’ annoyance
and rating of difficulty of each task were measured.

There were several interesting findings. Users performed the primary task more slowly
when they were interrupted in the middle of the task, even when the time on the
secondary task is removed. The interruptions in the midst of performing a task were
particularly annoying and caused more anxiety. Finally, interruptions made the task
seem more difficult.

These results suggest that users can switch from a primary task to (the beginning of) a
secondary task easily, but they have trouble switching back to the middle of a primary
task. This is consistent with the theory of Altmann and Trafton (2002), that
interruptions at the end of goals are more easily managed than interruptions that force
the primary task goals to remembered.

McFarlane (1998; 1999) suggested four types of interruptions strategies. These
strategies can be seen as a type of task allocation communication mechanism. These
include (a) immediately interrupting the user, (b) negotiating an interruption, that is, let
the user know an interruption is pending and letting them choose the time to respond,
(c) mediated, where the interrupter takes some account of the user’s activities and
chooses a better time for interruptions, and (d) batched, where a set of interruptions
during a given time period are dealt with all at once.

McFarlane ran a study comparing the four interruption approaches, which can be
viewed as examining four ways of task allocation. The primary task was a computer
game-type task that required multiple real-time steps for success. In this case, the
automation was handing tasks to the user to do. The tasks handed out by the automation
were a matching test similar to the Stroop task (when in a word naming task the stimuli
color and word are sometimes mismatched, leading to errors based on naming the color
or the word instead of vice versa). Users did not automate the second task even after
two hours of practice.

The results indicated that the different strategies lead to reliably different performance
on a variety of measures, and that no strategy was best across all measures. For
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example, negotiated interruptions lead to the best performance on the main task, but the
worst performance on the secondary task.

Ruff, Narayanan, and Draper (accepted pending revisions) examined how fixed levels
of automation influenced performance on a remotely operated vehicle (ROV) task.
They showed that automation that interacted with the user (management by consent)
led to better performance than management by exception or a completely manual mode.
While these results might be specific to the task and the automation, their results
suggest that automation that works with the user and that allows the user more control
leads to better performance in a variety of measures, including raw task performance,
self-ratings of situation awareness, and trust in the system.

4.2 Dynamic allocation studies

Endsley and Kabor (1999) performed a series of experiments to assess the impact of
intermediate levels of automation (see section 3.3.5 for a discussion of the levels of
automation proposed by Endsley) on human-system performance, operator situational
awareness, and workload for a complex dynamic control task. The impact of
automation level on the capability of the human operator to assume manual control
following automation failure was also investigated.

Endsley and Kabor s experimental results suggest that LOAs that involve sharing
option generation and implementation between human and machine have a significant
impact on system performance. These experiments revealed that humans benefited most
from task implementation assistance (either computer aided implementation assistance
or complete implementation assumption by the computer) and were somewhat
negatively affected by automated assistance for higher level cognitive functions such as
decision-making and option generation. LOAs that involve human generation of
options with computer implementation were found to produce superior results during
normal operations. Joint human-machine option generation (decision-making) degraded
performance compared with option generation by either the human or machine acting
alone.

Their results also indicated that operator ability to recover from a automation failures is
significantly better with LOAs that require some operator interaction in the
implementation role. Implementation strategies that involve the automation providing
assistance with the manual workload (but still keeping the operator involved in the
implementation) associated with the task appeared to be optimal. Surprisingly, little
impact on perceived workload of different LOA was noted across the ten LOAs. This
result is in contrast to the results or prior studies and could possibly be attributed to the
short time duration of the experimental task or that only a single task was performed as
opposed to multiple concurrent tasks (Mica R. Endsley & Kaber, 1999).

The  CASSY intelligent cockpit assistant described in Section 3.4.6.3 was subjected to
in-flight experiments in a real world aviation environment (Onken, 1997). The system
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was tested in the experimental cockpit of the Advanced Technologies Testing Aircraft
System (ATTAS) which is a specially developed modification of a 44-seat commuter
jet and 10 typical IFR regional flights in high traffic areas were performed. The
experimental cockpit was a designed as a standard modern flight deck with airbus
displays and autopilot. The CASSY system was been integrated into the experimental
cockpit in the ATTAS.

The CASSY flight tests demonstrated that intelligent cognitive systems based
automation can be integrated into the cockpit of modern aircraft. Simulator and aircraft
flight tests of the system indicated an increase in the joint system (human-machine)
situation assessment. The situation assessment capability dissimilarities between the
pilots and CASSY cognitive assistant led to complimentary performance. This
elevation of joint situation assessment was similar to that resulting from a human flight
crew (pilot-flying and pilot-not-flying) where each crew member examines the situation
in a dissimilar manner based on their current role. The tests indicated that the
dissimilarities in situation awareness of the human and an intelligent automated cockpit
assistant resulted in a reduction in the number of undetected errors, whether these errors
were committed by the pilot or by the automation. The tests also demonstrated the
potential capabilities of automated features such as pilot intent recognition and complex
flight planning.

In another study, Scallen and Hancock  (2001) found that in a multi-tasking situation,
automating one task as another task was introduced not only provided improved
performance during the automation for both tasks but also had carryover effects.
Performance measured as deviation from an ideal on a tracking task was about 10%
better when the automation was not active. They hypothesized that this improvement
was due to reduced operator fatigue.

Harris et al  (1995) found benefits when allowing users to choose when to switch
between manual and automatic modes. Users’ performance was better than when the
task was all manual, or all automatic if they had practice with the automation. Their
results suggest that it may be better to allow users to do the dynamic task allocation,
and that practice with the automation will be required before optimal performance
results.

4.3 Summary

The studies on how users work together with various types of automation that helps
allocate tasks suggests several comments. The first is that we will have to look at
usability after practice and training, both of which could make an initially awkward
system the most powerful. While the McFarlane study examined learning, enough to
show that one of the tasks was not automated, we know that learning and training are
important in dual-tasks  (Chong & Laird, 1997; Wickens & Hollands, 2000).

The second is that having users allocating the tasks instead of the automation allocating
the tasks might be the best approach. Studies, such as Ruff, et al., show that control
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with human input perform better.  Further work should look at having users self-
schedule or having them choose their own strategy for interruption.

The third is that we will need more data to understand particular tasks. This data will
have to include performance data, not just on what people would like, or feelings after
having used a system, but direct performance measures. We may find that in this area,
like so many others, that performance is not correlated with perceived effort (e.g.
Dawes, 1994; Ericsson & Simon, 1993; Hancock, Williams, & Manning, 1995).

The final is when and how to best share tasks appears to depend on many factors.
McFarlane  (1998; 1999) found that different strategies lead to different performance
on a variety of metrics, with no strategy dominating on all metrics. This may be
because we have not fully grasped the theoretical types of interruptions suggested by
McFarlane, or have not created cognitive models of the user being interrupted as
provided by Altmann and Trafton (2002). Future work, if it wants to predict the impact
of task allocation and task allocation strategies on performance, will need to do more
detailed theoretical analysis.

5 Recommendations for Improving Pilot/Automation through Dynamic Task
Allocation

Avoid providing multiple options — A number of research studies have pointed out that
human decision-making in real-world time constrained or resource constrained settings
does not follow a model of a formal decision making process. Instead, humans when
faced with making a decision under these conditions attempt to match the current
situation with an existing schema based on their personal experience and training and
effect the actions that have been successful in the past. This model of human decision-
making argues against (the automation) providing multiple options to the human for
consideration. Rather, the automation should monitor the actions of the human and only
intervene if it appears that these actions are seriously detrimental to goal achievement.

Minimize impact of interruptions — Interrupting humans when performing critical tasks,
particularly under time-constrained conditions, can lead to serious mistakes. The
intelligent agent should have an awareness of the context and the shared environment
including an understanding of what task the human is currently engaged in, how critical
this task is and how important the interruption (at this particular time) is relative to this
task.. The agent should use this awareness as well as what is known about interruptions
to chooses appropriate times to intersect with the human.

The human should be an active participant rather than a passive monitor — Assigning
humans the function of monitoring the performance of automation has been identified
as a major weakness in current automation design. Humans are ill-suited at monitoring
the performance of highly reliable systems. The reduction of the role for the human
operator to that of a monitor has been associated with a number of negative factors
including reduction in vigilance, complacency, loss of skills, loss of situational
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awareness, and skill decays. The human operator needs to be meaningfully involved at
a high (cognitive) level in all significant system tasks.

Humans have responsibility and must be given control authority — A central concept is
that the human(s) in the system have the ultimate responsibility for the performance of
the system and must be given control authority. Consequently, they must be supplied
not only with sufficient information to evaluate the situation but mechanisms to affect
the control of the system. For situations involving human-machine systems with the
capability for automation initiated dynamic task allocation the human must be informed
of the intentions of the automation to assume control of the performance of some task.
Furthermore, the human must be able to either reject this intention, to query the
machine agent as to the reasons for this action and/or to modify the intended actions of
the automation. This can be accomplished, for example, by allowing the automation to
assume only a subset of the intended tasks/functions.

The automation should clearly indicate its behavior and state — The ability for the
human elements in a human-machine system to develop and maintain situational
awareness during all phases of system operation is critical to safe and efficient system
operation. A number of attributes of the joint system that support situational awareness
in the human are:

• An understanding of what the current states of the other team members
(including automation) are in terms of their goals, intentions and future actions.

• An awareness of the environment, context and system state.

The automation must be capable of inferring the human and environment context and
state — In order for the automation to function as an effective member of human-
machine team it must be capable of developing and maintaining an appropriate internal
model of the shared environment and context, the goals and the current intentions and
actions of the other team members including humans. It must be capable of developing
and maintaining this knowledge through appropriate sensing and integration of
available system and environmental parameters and without requiring explicit
instructions or explanations from the other team members. In short, the automation
must have the capability for developing a situational awareness that will compliment
the other team members and will facilitate communication, coordination and
development of a shared understanding.

A potentially key component of situational awareness is for the team members
(including automation) to have an understanding of the current affective and physical
state of the humans. Research has shown that affective state can have a profound
influence on human cognitive processes, performance and potential for error. While it
appears possible to measure certain parameters and from these measurements infer the
human s affective state (at least in a relative sense), it is not clear from the research
what specific actions could (and should) be taken by the automation in response to
sensed changes in the human affective state. This area requires further research.
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Intermediate levels of automation may be optimal - Recent research suggests that there
is a benefit to human-machine joint system performance from intermediate levels of
automation. The largest benefits come from task implementation assistance and
performance is negatively affected by automated assistance for higher level cognitive
functions such as decision-making.

Automation should provide a varied, but not too varied, set of tasks
to the user. Vigilance tasks and long times on a given task are associated with poorer
performance on a variety of measures  (for a review, see (Wickens & Hollands, 2000).
Providing pilots with breaks through automation can improve their performance as long
as the cycle time (automation or human as controller) is not too short  (Scallen &
Hancock, 2001; Scallen, Hancock, & Duley, 1995).
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